
Context

PHILIPPE LALANDA

KOBE UNIVERSITY – AUGUST 2017



Philippe Lalanda - 2017

Pervasive computing

Pervasive computing promotes the integration of smart,
networked devices in our living environments in order to
provide us services.

Those services

are context aware

require minimal and natural interaction

bring real added value

are easy to administrate by end-users

2



Philippe Lalanda - 2017

Purpose of this lecture

Our goal is to:
- define the notion of context in pervasive computing

- define the notion of context-aware applications 

- show how to structure and build a context

- develop different modeling techniques

3



Philippe Lalanda - 2017

Agenda

Example

Definitions

Global architecture

Context building

Challenges and conclusion

4



Philippe Lalanda - 2017

Example: “Keeping in touch”

Management of communication means with your family 
and friends

• Phone calls
• Messages
• Photos
• Coordinating activities
• Being aware of activities of friends and family

プレゼンター
プレゼンテーションのノート
Partly based on Bill Schilit’s tutorial on context-aware communication



Philippe Lalanda - 2017

Problems with Keeping in Touch

Irrelevant messages
• Vacation mail, junk email

Interruptions
• During meetings, movies, dinner, driving

Lack of awareness on callee side
• Phone tag, time zone issue (oops!)

Information overload
• Can make it hard to find useful messages

The goal is to provide the right call/message at the right 
time and under the right form



Philippe Lalanda - 2017

5 Design Considerations

1. Improving relevance
2. Minimizing disruption
3. Improving awareness
4. Reducing overload
5. Selecting channels



Philippe Lalanda - 2017

5 Design Considerations

1. Improving relevance
• Deciding when a communication is relevant to the 

person’s current (or near future) situation. 
• For example, getting notification about an email 

from your travel agent regarding itinerary changes 
while packing to leave for the airport.

2. Minimizing disruption
3. Improving awareness
4. Reducing overload
5. Selecting channels



Philippe Lalanda - 2017

5 Design Considerations

1. Improving relevance
2. Minimizing disruption

• Deciding when and how to notify people that they 
have a communication. 

• For example, your phone should vibrate and not ring, 
when you are at the symphony (unless it is truly 
urgent). 

3. Improving awareness
4. Reducing overload
5. Selecting channels



Philippe Lalanda - 2017

5 Design Considerations

1. Improving relevance
2. Minimizing disruption
3. Improving awareness

• Deciding what information and mechanisms can 
help people make intelligent communication 
decisions. 

• For example, the caller should be told you are at the 
movies before the call goes through.

4. Reducing overload
5. Selecting channels

10



Philippe Lalanda - 2017

5 Design Considerations

1. Improving relevance
2. Minimizing disruption
3. Improving awareness
4. Reducing overload

• Deciding how to reduce the number of communications 
that don’t apply given your context. 

• For example, filtering out emails about going to lunch 
when you are away from the office (or already at lunch).

5. Selecting channels

11



Philippe Lalanda - 2017

5 Design Considerations

1. Improving relevance
2. Minimizing disruption
3. Improving awareness
4. Reducing overload
5. Selecting channels

• Deciding which communication device should be used 
to get in touch with somebody. 

• For example, routing calls to your home phone instead of 
your cell phone when you are at home and cellular 
reception is poor.

12



Philippe Lalanda - 2017

To do so...

The “Keeping-In-Touch” application has to be aware of its context 
of execution

Then, it must adapt its behavior in order to provide the expected 
service

This is the essence of pervasive computing, but rather hard to 
achieve

13



Philippe Lalanda - 2017

Agenda

Example

Definitions

Global architecture

Context building

Challenges and conclusion

14



Philippe Lalanda - 2017Philippe Lalanda 15

Context definition

Dey, 2001

Any information that can be used to characterize the
situation of entities (i.e., whether a person, place or object)
that are considered relevant to the interaction between a
user and an application, including the user and the
application themselves

Application



Philippe Lalanda - 2017

Examples

 User identity
 Spatial information (location, orientation, speed, acceleration)
 Temporal information (time, date, season)
 Environmental information (temperature, air quality, light, noise)
 Social situation (who you are, who you are with, people nearby)
 Resources that are nearby (accessible devices, networks, hosts)
 Availability of resources (battery, display, network, bandwidth)
 Physiological measurements (blood pressure, heart rate, respiration

rate, muscle activity, tone of voice)
 Activity (talking, reading, walking, running, sleeping)
 Schedules and agenda

16



Philippe Lalanda - 2017

Classification

Computing context

Application itself, network connectivity, communication
bandwidth, nearby resources like printers, display, etc.

User context

People nearby, user’s profile, location, emotional state,,
current activity

Physical context

Objects, locations, lighting, noise, traffic, conditions,
temperature, etc.

プレゼンター
プレゼンテーションのノート





Philippe Lalanda - 2017

Primary versus secondary context

Primary context (low level information)

Any information retrieved without using existing context and 
without performing any kind of sensor data fusion operations 
(e.g. GPS sensor readings as location information)

Secondary context (High level information)

Any information that can be computed using primary 
context. The secondary context can be computed by using 
sensor data fusion operations or data retrieval operations 
such as web service calls

18



Philippe Lalanda - 2017

Example: activity

The activity of a person belongs to secondary context
• Computed from multiple sensors values
• Use of probabilistic models (Markov)

19



Philippe Lalanda - 2017

Context-aware application

Abowd, 2009
A system is context-aware if it uses context to provide 
relevant information and/or services to the user, where 
relevancy depends on the user’s task

Example
Smart phones screen goes brighter when exposed to light 
(using photo sensors) and goes dimmer on low battery.

Application

Context source

Uses

20



Philippe Lalanda - 2017

Context-aware application - implication

Context-aware applications adapt according to the context in 
order to provide better services

Delivering the right service at the right moment

Application

Adaptation loop

Context source

21



Philippe Lalanda - 2017

Level of context-awareness

Personalization
It allows the users to set their preferences and expectation. 
For example, users may set the preferred temperature so the 
heating system can maintain the specified temperature.

Passive context-awareness
The system monitors the environment and offers the 
appropriate options to the users so they can take actions. 
For example, when a user enters a super market, the mobile 
phone alerts the user with a list of discounted products.

Active context-awareness
The system monitors the situation and acts autonomously. For 
example, if the smoke detectors and temperature sensors 
detect a fire, the fire brigade is called by the system.

22



Philippe Lalanda - 2017

Context model

Henricksen, 1999

A context model identifies a concrete subset of the context
that is realistically attainable from sensors, applications and
users and able to be exploited in the execution of the task.

The context model that is employed by a given context-
aware application is usually explicitly specified by the 
application developer, but may evolve over time”

JohnHappy Kitchen
locationmood

Drinkin
g

activity
Tea

beverage

23



Philippe Lalanda - 2017

Context attribute

Henricksen, 1999

A context attribute is an element of the context model 
describing the context. A context attribute has an identifier, 
a type and a value, and optionally a collection of properties 
describing specific characteristics

Tea
Green
Japanese
Very hot

24



Philippe Lalanda - 2017

Context quality

A number of definitions and parameters that have been 
proposed.

Important parameters

• data validity
• context data precision
• context data up-to-dateness (freshness)

The context quality depends on the quality of the physical 
sensors, and quality of the delivery process

25



Philippe Lalanda - 2017

Synthesis 

Context is a major source of information for pervasive applications

It enables to manage the vast amount of information that
surrounds the user
It allows to discriminate what is important and what is not
It helps us to adapt to our surroundings

But context

is imperfect
has temporal dimensions
is hard to capture, represent and manage

26



Philippe Lalanda - 2017

Agenda

Example

Definitions

Global architecture

Context building

Challenges and conclusion

27



Philippe Lalanda - 2017

Getting contextual information - 1

Directly from sensors 
• Context is directly acquired from the sensor 
• Software drivers and libraries need to be installed locally
• This method is typically used to retrieve data from sensors 

attached locally

Application

28



Philippe Lalanda - 2017

Benefits and limits

Efficient as it allows direct 
communication with the sensors

Have more control over sensor 
configuration and data retrieval 
process

Can be used for small scale scientific experiments. Can also be used 
for situation where limited number of sensors are involved.

Significant technical knowledge is 
required about devices internals and 
their configuration

Significant amount of time, effort, 
cost involved

Updating is very difficult due to tight 
bound between sensor and application

29



Philippe Lalanda - 2017

Getting contextual information - 2

With a middleware
• sensor data is acquired by middleware solutions. 
• The applications retrieve sensor data from the middleware and 

not from the sensor hardware directly

Ex: publish-based

Middleware

Application

30



Philippe Lalanda - 2017

Benefits and limits

Easy to manage and retrieve 
context as most management 
tasks are facilitated by the 
middleware.

Can retrieve data faster with less 
effort and technical knowledge

Pervasive application will use this methods in most cases. Can be 
used in situations where large number of heterogeneous sensors are 
involved (on local network).

Require more resources (processing, 
memory, storage) as middleware 
solutions need to be employed

Less control over sensor configuration

Moderately efficient as data need to be 
retrieve through middleware

31



Philippe Lalanda - 2017

Getting contextual information - 3

With a context server
• Specific module in charge of acquiring context, from several 

sources
• Provides an API to access contextual information
• Can be distributed (if resources are scare for instance)

Application

Context ServerWeb
Service

32



Philippe Lalanda - 2017

Benefits and limits

Less resources required

Can retrieve data faster with less 
effort and technical knowledge

Can be used in situations where significant amount of context are 
required but have only limited resources (i.e. cannot employ context 
middleware solutions due to resource limitations) that allows run the 
consumer application.

No control over sensor configuration

Less efficient as the context need to be 
pulled from server over the network

33



Philippe Lalanda - 2017

Frameworks

Principles related to context management frameworks

Supporting technology
Application programming interface (API)
Event management
Extensibility
Scalability
optimization

プレゼンター
プレゼンテーションのノート





Philippe Lalanda - 2017

Agenda

Context and context-awareness

Example

Global architecture

Context building
structure
acquisition
modeling

Challenges and conclusion

35



Philippe Lalanda - 2017

Building context-aware applications

Regardless of the global architecture, building a context 
requires to

• Acquire the necessary data
• Model and abstract the captured information
• Possibly, reason about the information 
• Make the modeled information available to application
• (it is then the task of applications to adapt themselves)

36



Philippe Lalanda - 2017

Layered approach

• Acquisition 
• Single/Double way
• SynchronizationAcquisition

37

プレゼンター
プレゼンテーションのノート
Dedicated Framework


Ontology : CONON , COBRA – ONT , SOUPA 

MODELE 



Philippe Lalanda - 2017

Layered approach

• Model
• Storage
• HistoricRepresentation

Acquisition

38

プレゼンター
プレゼンテーションのノート
Dedicated Framework


Ontology : CONON , COBRA – ONT , SOUPA 

MODELE 



Philippe Lalanda - 2017

Layered approach

• Aggregation
• Mediation
• Inference
• EnrichmentProcessing

Representation

Acquisition

39

プレゼンター
プレゼンテーションのノート
Dedicated Framework


Ontology : CONON , COBRA – ONT , SOUPA 

MODELE 



Philippe Lalanda - 2017

Layered approach

• Query
• APIs
• EventAccess

Processing

Representation

Acquisition

40

プレゼンター
プレゼンテーションのノート
Dedicated Framework


Ontology : CONON , COBRA – ONT , SOUPA 

MODELE 



Philippe Lalanda - 2017

Agenda

Context and context-awareness

Example

Global architecture

Context building
structure
acquisition
modeling

Challenges and conclusion

41



Philippe Lalanda - 2017

Context acquisition: responsibility

Pull
The software component which is responsible for acquiring 
sensor data from sensors make a request (e.g. query) from the 
sensor hardware periodically (i.e. after certain intervals) or 
instantly to acquire data

Push
The physical or virtual sensor pushes data to the software 
component which is responsible to acquiring sensor data 
periodically or instantly. Periodical or instant pushing can be 
employed to facilitate a publish and subscribe model

42



Philippe Lalanda - 2017

Context acquisition: frequency

Instant (threshold violation)
These events occur instantly. The events do not span across 
certain amounts of time. Open a door, switch on a light, or 
animal enters experimental crop field are some types of instant 
events. In order to detect this type of event, sensor data needs 
to be acquired when the event occurs. Both push and pull 
methods can be employed.

Interval
These events span a certain period of time. Raining, animal 
eating a plant, or winter are some interval events. In order to 
detect this type of event, sensor data needs to be acquired 
periodically (e.g. sense and send data to the software every 20 
seconds). Both push and pull methods can be employed.

43



Philippe Lalanda - 2017

Context acquisition: process

Sense
The data is sensed through sensors, including the sensed data 
stored in databases

Derive
The information is generated by performing computational 
operations on sensor data. These operations could be as simple 
as web service calls or as complex as mathematical functions 
run over sensed data (e.g. calculate distance between two 
sensors using GPS coordinates)

Manually provided
Users provide context information manually via predefined settings 
options such as preferences (e.g. understand that user doesn’t like 
to receive event notifications between 10pm to 6.00am).

44



Philippe Lalanda - 2017

Agenda

Context and context-awareness

Example

Global architecture

Context building
structure
acquisition
modeling

Challenges and conclusion

45



Philippe Lalanda - 2017

Context modeling

Extensive research and proposals on that topic

Let us examine the us of
Key value
Markup
Objects (programming)
Databases (relational)
Logic 
Ontologies
Entity/relation

46



Philippe Lalanda - 2017

Key-value based context

Context

App App App

((type printer) (color yes)...)

Contextual information is sent to applications through lists of key-
value pair

• new list is sent when information is updated or when new information is 
captured (mobility)

• Applications provide means to receive the information and interpret it

47



Philippe Lalanda - 2017

Key-value - Benefits and limits

Simple 

Flexible

Easy to manage when small 
applications

Strongly coupled with application

Not scalable

Not structured (no schema)

Hard to retrieve information

No way to represent relationships

Can be used to model limited amount of data such as user 
preferences and application configurations. Mostly independent 
and non-related pieces of information.

This is also suitable for limited data transfer and any other less 
complex temporary modeling requirements.

48

プレゼンター
プレゼンテーションのノート
Read the slide



Philippe Lalanda - 2017

Markup-based context

Context

App App App

((type printer) 
(features (color yes)

(size A4) ...))

Contextual information is sent to applications through XML files (with 
keywords and nested lists)

• new file is sent when new or updated information
• Applications provide means to receive the information and interpret it

49



Philippe Lalanda - 2017

Markup - Benefits and limits

Flexible 

More structured

Validation possible (schemas)

Tools available

Can be used as intermediate data organization format as well as 
mode of data transfer over network. .

Can be used to decouple data structures used by two 
components in a system.

Strongly coupled with application

Not scalable

Can be complex when many levels of 
information are involved

Information retrieval not always easy

50

プレゼンター
プレゼンテーションのノート
Read the slide



Philippe Lalanda - 2017

Object-based context

App App App

Contextual information is provided through object-oriented APIs

• Applications have to get the information
• Events can be sent when something changes (can be complex)

51



Philippe Lalanda - 2017

Objects - Benefits and limits

Allow relationships modeling

Can be well integrated with 
programming languages

Tools available

Can be used to represent context in programming code level. 
Allows context runtime manipulation. Very short term, and 
mostly stored in computer memory.

Hard to retrieve information

No standards but govern by design 
principle

52

プレゼンター
プレゼンテーションのノート
Read the slide



Philippe Lalanda - 2017

Database context

App App App

abc

xyz
abc

abc

xyz
abc

abc

xyz
abc

abc

xyz
abc

abc

xyz
abc

abc

xyz
abc

abc

xyz
abc

Contextual information is provided through request server 

• Applications have to get the information (with SQL in general)
• Events can be sent when something changes (extremely complex)

53



Philippe Lalanda - 2017

Database - Benefits and limits

Allow relationships modeling

Based on universal APIs

Different standards (for data 
representation) available

Processing tools available

Can be used for long-term and large volume of permanent data. 
Historic context can be used in database context.

Querying can be complex

Configuration may be required

No standards but govern by design 
principle

54

プレゼンター
プレゼンテーションのノート
Read the slide



Philippe Lalanda - 2017

Logic-based context

App App App

Contextual information is provided as facts (and sentences)

• Applications have to get the information
• Events can be sent when something changes (complex)

(A, B, C)

55



Philippe Lalanda - 2017

Logic- Benefits and limits

Allow to generate knowledge

Support logical reasoning

Processing tools available

Can be used to generate high level context using low level 
context, model events and actions.

Strongly coupled with applications

No standard

Hard to use

56

プレゼンター
プレゼンテーションのノート
Read the slide



Philippe Lalanda - 2017

Ontology-based context

App App App

Contextual information is provided as a semantic graph

• Applications have to get the information
• Events can be sent when something changes (complex)

57



Philippe Lalanda - 2017

Ontology - Benefits and limits

Support semantic reasoning
Allow expressive representation 
of context
Application independent
Strong support by standards
Sophisticated tools available

Can be used to model domain knowledge and structure context 
based on the relationships defined by the ontology. Rather than 
storing data on ontologies (slow and hard to access), data can be 
stored in appropriate data sources (databases) while structure 
is provided by ontologies. 

Representation can be complex

Information retrieval can be complex 
and resource intensive

Reasoning can be long

58

プレゼンター
プレゼンテーションのノート
Read the slide



Philippe Lalanda - 2017

Agenda

Example

Definitions

Global architecture

Context building

Challenges and conclusion

59



Philippe Lalanda - 2017

Conclusion

Different definitions of context available, but a common (intuitive) 
understanding

Important aspects

Identity and location

Activity

Time

Available resources

Different ways to represent context

60



Philippe Lalanda - 2017

Multiple contexts

Smart device

Gateway

Cloud infrastructure

Application2Application1

61



Philippe Lalanda - 2017

Main goal

Build the context for the the application

62


	Context
	Pervasive computing
	Purpose of this lecture
	Agenda
	Example: “Keeping in touch”
	Problems with Keeping in Touch
	5 Design Considerations
	5 Design Considerations
	5 Design Considerations
	5 Design Considerations
	5 Design Considerations
	5 Design Considerations
	To do so...
	Agenda
	Context definition
	Examples
	Classification
	Primary versus secondary context
	Example: activity
	Context-aware application
	Context-aware application - implication
	Level of context-awareness
	Context model
	Context attribute
	Context quality
	Synthesis 
	Agenda
	Getting contextual information - 1
	Benefits and limits
	Getting contextual information - 2
	Benefits and limits
	Getting contextual information - 3
	Benefits and limits
	Frameworks
	Agenda
	Building context-aware applications
	Layered approach
	Layered approach
	Layered approach
	Layered approach
	Agenda
	Context acquisition: responsibility
	Context acquisition: frequency
	Context acquisition: process
	Agenda
	Context modeling
	Key-value based context
	Key-value - Benefits and limits
	Markup-based context
	Markup - Benefits and limits
	Object-based context
	Objects - Benefits and limits
	Database context
	Database - Benefits and limits
	Logic-based context
	Logic- Benefits and limits
	Ontology-based context
	Ontology - Benefits and limits
	Agenda
	Conclusion
	Multiple contexts
	Main goal

