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Abstract—Smart city provides various value-added services
by collecting large-scale data from houses and infrastructures
within a city. To use such large-scale raw data, individual
applications usually take expensive computation effort and
large processing time. To reduce the effort and time, we
propose Materialized View as a Service (MVaaS). Using the
MVaaS, each application can easily and dynamically construct
its own materialized view, in which the raw data is cached in
an appropriate format for the application. Once the view is
constructed, the application can quickly access necessary data.

In this paper, we design a framework of MVaaS specifically
for large-scale house log, managed in our smart-city data
platform Scallop4SC. In the framework, each application first
specifies how the raw data should be filtered, grouped and
aggregated. For a given data specification, MVaaS dynamically
constructs a MapReduce batch program that converts the raw
data into a desired view. The batch is then executed on Hadoop,
and the resultant view is stored in HBase. We conduct an
experimental evaluation to compare the response time between
cases with and without the proposed MVaaS.

Keywords- large-scale: house log: materialized view: high-
speed and efficient data access: MapReduce: KVS: HBase;

I. INTRODUCTION

Smart city refers to a next-generation city planning, en-
couraging to improve the efficiency of the city with ICT
technologies [1][2]. The smart city provides various value-
added services. A significant characteristic of the services
is to use various information of houses and infrastructures
within the city. The information include energy consump-
tions of devices, operation log of household appliances
and equipment, environmental data such as temperature
and humidity, traffic data from roads and railroads. These
are gathered from sensors and system loggers deployed in
heterogeneous systems. In general, the information gathered
from the smart city is Big Data, comprising large-scale and
heterogeneous data items. Our long term goal is to provide
a universal platform, on which applications and services can
extensively use the smart city data for various purposes.

In our previous research [3][4], we proposed a logging
platform, called Scallop4SC (Scalable Logging Platform
for Smart City). Exploiting cloud technologies Hadoop and
HBase, Scallop4SC processes and stores the large amount of
house logs (e.g., power consumption logs) from smart homes
within a smart city. Through API, Scallop4SC provides the
smart city data for various applications, such as energy
visualization, detection of wasteful use, and peak shaving.

In general, required data vary from one application to
another. Hence, each application has to transform the raw
data in Scallop4SC into its appropriate format and granu-
larity. However, due to the size and variety of the raw data,
the transformation poses expensive computation and long
processing time for the application.

To cope with the problem, we introduced the concept
of materialized view in Scallop4SC [5]. The materialized
view is a database technology that caches results of queries
in an actual table to improve the response time [6]. Our
experiment showed that the materialized view dramatically
improved the response time. However, each materialized
view was statically created by a proprietary MapReduce pro-
gram. Thus, application developers had to be familiar with
complex knowledge of Hadoop/MapReduce and HBase, for
implementing their own materialized views. It was also
difficult to reuse the existing views for other applications.

This motivates us to encapsulate complex creation and
management of the materialized views in an abstract cloud
service. This is what we call Materialized View as a Service
(MVaaS) in this paper. For a given recipe of required data
(called data specification), MVaaS dynamically creates a
materialized view for an individual application. Once the
view is constructed, the application can quickly access
necessary data through API of the view.

In this paper, we design a framework of MVaaS specif-
ically for Scallop4SC. In the framework, an application
developer of Scallop4SC creates a data specification pre-
scribing how the raw data should be filtered, grouped and
aggregated. Based on the data specification, MVaaS dynam-
ically generates a MapReduce batch program that converts
the raw data into a desired view. The batch is then executed
on Hadoop, and the resultant view is stored in HBase. Finally
the materialized view is accessed via MVaaS API. Thus, the
developer can easily create and use own materialized view.

We conduct a performance evaluation using large-scale
power consumption data, recorded in a real smart home
environment for a year. It is shown that the proposed
MVaaS is especially effective in cases where the applications
repeatedly access the same data, or the view is derived from
a large set of raw data.
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II. PRELIMINARIES

A. Smart City and Services

The principle of the smart city is to gather data of the
city first, and then to provide appropriate services based
on the data. Thus, a variety of data are collected from
sensors, devices, cars and people across the city. A smart
city provides various value-added services, named smart
city services, according to the situation of a city. Promising
service fields include energy saving [7], traffic optimization
[8], and agricultural support [9].

The size and variety of gathered data become huge in
general. Velocity (i.e., freshness) of the data is also important
to reflect real-time or latest situations and contexts. Thus, the
data for the smart city services is truly big data.

The limitation of the storage is relaxed significantly by
cloud computing technologies. It is now possible to store
various kinds of data as they are, and to reuse the raw data
for various purposes. We are interested in constructing a data
platform to manage the big data for smart city services.

B. Scallop4SC (Scalable Logging Platform for Smart City)

We have been developing a data platform, called Scal-
lop4SC, for smart city services [3][4]. Scallop4SC is specif-
ically designed to manage data from houses. The data from
houses are essential for various smart city services, since
a house is a primary construct of a city. In near future,
technolgies of smart homes and smart devices will enable
to gather various types of house data.

Scallop4SC basically manages two types of house data:
house log and house configuration. The house log is history
of values of any dynamic data measured within a smart
home. The house configuration is static meta-data explaining
a house.

Figure 1 shows the architecture of Scallop4SC. For each
house in a smart city, a logger measures various data and
records the data as house log. The house log is periodically
sent to Scallop4SC via a network. Due to the number of
houses and the variety of data, the house log generally
forms big data. Thus, Scallop4SC stores the house log using
HBase NoSQL-DB, deployed on top of Hadoop distributed
processing. On the other hand, the house configuration is
static but structural data. Hence, it is stored in MySQL RDB
to allow complex queries over houses, devices and people.

Scallop4SC API (shown in the middle in Figure 1)
provides a basic access method to the stored data. Since
Scallop4SC is an application-neutral platform, the API just
allows basic queries (see [4]) to retrieve the raw data.
Application-specific data interpretation and conversion are
left for individual applications.

C. Introducing Materialized View in Scallop4SC

In general, individual applications use the smart city
data in different ways. If an application-specific data is
derived from much of raw data, the application suffers from
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Figure 1. Scallop4SC with static MVs

expensive data processing and long processing time. This
is because the application-specific data conversion is left to
each application. If the application repeatedly requires the
same data, the application has to repeat the same calculation
to the large-scale data, which is quite inefficient.

To cope with this, we introduced materialized view in
Scallop4SC, as shown in the lower part of Figure 1 [5].
The application-specific data can be considered as a view,
which looks up the raw data based on a certain query. The
materialized view is constructed as a table, which caches
results of the query in advance.

Note, however, that the raw data in Scallop4SC is very
large, and that we cannot use SQL for HBase to construct the
view. Therefore, in [5] we developed a Hadoop/MapReduce
program for each application, which efficiently converts the
raw data into application-specific data.

A major limitation of the previous research is that the
MapReduce program was statically developed and deployed.
This means that each application developer has to implement
a proprietary data converter by himself. The implementation
requires development effort as well as extensive knowledge
of HBase and Hadoop/MapReduce. It is also difficult to
reuse the existing materialized views for other applications.
These are obstacle for rapid creation of new applications.
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III. MATERIALIZEDVIEW AS A SERVICE FOR

LARGE-SCALE HOUSE LOG

A. Materialized View as a Service (MVaaS)

To overcome the limitation, we propose a new concept
of Materialized View as a Service (MVaaS). MVaaS en-
capsulates the complex creation and management of the
materialized views within an abstract cloud service. Al-
though MVaaS can be a general concept for any data
platform with big data, this paper concentrates the design
and implementation of MVaaS for house log in Scallop4SC.

Figure 2 shows the new architecture of Scallop4SC with
MVaaS. A developer of a smart city application first gives
an order in terms of data specification, describing what
data should be presented in which representation. MVaaS
of Scallop4SC then dynamically creates a materialized view
appropriate for the application, from large-scale house log
of Scallop4SC. Thus, the application developer can easily
create and use own materialized view without knowledge of
underlying cloud technologies.

In the following subsections, we explain how MVaaS
converts the raw data of house log into application-specific
materialized view.

B. House Log Stored in Scallop4SC

First of all, we briefly review the data schema of the house
log in Scallop4SC (originally proposed in [3]).

Table I shows an example of house logs obtained in our
laboratory. To achieve both scalability for data size and
flexibility for variety of data type, Scallop4SC stores the
house log in the HBase key value store. Every house log is
stored simply as a pair of key (Row Key) and value (Data).
To store a variety of data, the data column does not have
rigorous schema. Instead, each data is explained by a meta-
data (Info), comprising standard properties for house log.

The properties include date and time (when the log is
recorded), device (from what the log is acquired), house
(where in a smart city the log is obtained), unit (what unit
should be used), location (where in the house the log is
obtained) and type (for what the log is). Details of device,
house and location are defined in an external database of
house configuration in MySQL (see Figure 2). A row key
is constructed as a concatenation of date, time, type, home
and device. We assume that these logs are used as raw data
by various smart city services and applications.

C. Idea of Converting Raw Data into Materialized View

The primary task of MVaaS is to convert the raw data
in Table I into an application-specific view, according to a
given data specification (defined later).

For example, let us consider a statistical application that
uses daily total energy of each device. If the house logs were
stored in RDB, we would specify the following SQL:

1 CREATE VIEW dailyConsumptionPerDevice AS
2 SELECT date,device,SUM(Data) FROM houselog
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3 WHERE type=Energy AND unit=W
4 GROUP BY date,device;

As we can see in the above SQL, a typical view creation
consists of three steps:

∙ Step 1 (Filter): Filter necessary data records out of all
raw data (corresponding to WHERE clause).

∙ Step 2 (Group): For the data records, group multiple
data records based on one or multiple properties (cor-
responding to GROUP BY clause).

∙ Step 3 (Aggregate): For each group, aggregate data
values using an aggregate function (e.g., SUM(Data)).

However, our problem is not that simple, because the table
of house log is huge and stored in a NoSQL database.

Our key idea is to implement a framework that exe-
cutes the above three steps with a MapReduce program.
Figure 3 shows a scenario of creating a materialized view
of dailyConsumptionPerDevice from raw data of
house log. First, we filter the raw data to extract relevant
rows with Energy type and W unit (Step 1). The rows are
then grouped according to the same date and the same device
(Step 2). For each group, the energy values are aggregated
by SUM function to obtain the daily energy consumption
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Table I
RAW DATA: HOUSE LOG OF SCALLOP4SC

Row Key Column Families
Data: Info:

(dateTtime.type.home.device) date: time: device: house: unit: location: type:
2013-05-28T12:34:56.Energy.cs27.tv01 600 2013-05-28 12:34:56 tv01 cs27 W living room Energy
2013-05-28T12:34:56.Device.cs27.tv01 [power:off] 2013-05-28 12:34:56 tv01 cs27 status living room Device
2013-05-28T12:34:56.Environment.cs27.temp3 24.0 2013-05-28 12:34:56 temp3 cs27 Celsius kitchen Environment
2013-05-28T12:34:56.Environment.cs27.pcount3 3 2013-05-28 12:34:56 pcount3 cs27 people living room Environment
2013-05-28T12:35:00.Device.cs27.tv01 on() 2013-05-28 12:35:00 tv01 cs27 operation living room Device
: : : : : : : : :

of each device (Step 3). As will be explained later, in our
MapReduce program, a map process, a shuffle process and
a reduce process will execute Step 1, 2 and 3, respectively.
Finally, the resultant view is stored in a new HBase table,
which makes the view materialized.

D. Describing Data Specification

To generalize the scenario in the previous section for
other applications, we here define the data specification.
Intuitively, the data specification is considered as an order
from an application, specifying how the resultant view
should be generated. An SQL equivalent to a template of
the proposed data specification is expressed as follows:

1 CREATE VIEW $view_name AS
2 SELECT $prop1, $prop2,...,$prop_n,
3 $aggregate_function($expression)
4 FROM houselog
5 WHERE $filtering_condition
6 GROUP BY $prop1, $prop2,...,$prop_n;

In the above, $ represents a placeholder, which can be
replaced by a concrete name or expression in accordance
with individual context.

In the proposed MVaaS, the following three items
should be specified in the data specification, to create an
application-specific materialized view: (1) a filtering condi-
tion, (2) grouping properties, (3) an aggregation function.

Filtering Condition: A filtering condition is a condition
that extracts relevant rows from all house logs. Equivalently,
it corresponds to $filtering_condition in the above
SQL. In our framework, an (atomic) filtering condition
𝑓𝑖𝑙𝑡𝑒𝑟 is defined by 𝑓𝑖𝑙𝑡𝑒𝑟 = [𝑝𝑟𝑜𝑝 𝑐𝑚𝑝 𝑣𝑎𝑙], where 𝑝𝑟𝑜𝑝
represents a property name (i.e., column qualifier) of the
house log table (see Table I), 𝑐𝑚𝑝 represents a comparison
operator (==, !=, >=, <=, > or <), and 𝑣𝑎𝑙 repre-
sents a value over the property. If 𝑓𝑖𝑙𝑡𝑒𝑟1 and 𝑓𝑖𝑙𝑡𝑒𝑟2 are
both filtering conditions, then [𝑓𝑖𝑙𝑡𝑒𝑟1 && 𝑓𝑖𝑙𝑡𝑒𝑟2] (logical
AND), [𝑓𝑖𝑙𝑡𝑒𝑟1 || 𝑓𝑖𝑙𝑡𝑒𝑟2] (logical OR), ! [𝑓𝑖𝑙𝑡𝑒𝑟𝑖] (logi-
cal NOT) are also filtering conditions.

Grouping Properties: Grouping properties define groups
of the filtered data. If multiple rows take the same values
with respect to the properties, these rows are grouped into
the same group. The grouping properties are equivalent to
$prop1,$prop2,...,$prop_n in the above SQL.

In the data specification, grouping properties 𝑔𝑟𝑜𝑢𝑝 are
defined by 𝑔𝑟𝑜𝑢𝑝 = [𝑝1, 𝑝2, ..., 𝑝𝑛], where each 𝑝𝑖 is one

of the followings: Data, device, house, unit,
location, type, TIME, CUSTOM. Properties from
Data to type are those in Table I. TIME specifies
temporal granularity of the grouping, which is defined
by one from year, month, date, hour, minute,
second. CUSTOM represents a user-defined grouping crite-
ria, such as AM gathering all logs taken in the morning.

In the proposed method, concatenation of values of the
grouping properties is used as every row key of the materi-
alized view. Therefore, it is important to determine the order
of 𝑝𝑖’s, by considering priority among the properties.

Aggregate Function: An aggregation function defines
how to aggregate the grouped house logs, which corre-
sponds to $aggregate_function($expression) in
the previous SQL.

In our framework, an aggregation function is defined
by 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 = 𝑎𝑔𝑔𝑟(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛), where 𝑎𝑔𝑔𝑟 is
one of the following functions: SUM (total sum), MAX
(maximum value), MIN (minimum value), AVG (aver-
age), COUNT (count of items), CONCAT (concatenation of
items), ID (identity), CUSTOM (user-defined function). Also,
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is any expression defined with properties of the
houselog table (see Table I).

E. Generating MapReduce Converter

Once a data specification is given, MVaaS dynamically
generates a MapReduce program that converts the raw data
into the target view. A pseudo code of the MapRedeuce
program is as follows:

1 class Mapper
2 method map(rowkey, column)
3 if(filter(column)==true)
4 for (p in group)
5 key = concat(key, column.p.getValue())
6 value = eval(expression(column))
7 EMIT(key, value)
8

9 class Reducer
10 method reduce(key, [v1, v2, ..., vn])
11 result = aggr(v1, v2,...,vn)
12 EMIT(key, result)

Mapper: For each row of house logs, Mapper class takes
a row key and column families. Mapper first check if data in
the column satisfies filtering condition. If it does, it generates
a key by concatenating the value of each grouping property.
The value is obtained by evaluating the expression according
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Figure 3. Flowchart of converting raw data into materialized view

to values of column. The pair of key and value is emitted
to Reducer.

Reducer: After the map process, data values 𝑣1, 𝑣2, ..., 𝑣𝑛
with the same key are gathered and passed to Reducer. Re-
ducer just aggregate values 𝑣1, 𝑣2, ..., 𝑣𝑛 using a designated
aggregated function. The key and the result is emitted as a
row of the materialized view.

The MapReduce program is then compiled and executed

on Hadoop in Scallop4SC. The resultant key-values are
stored in a new HBase table as a materialized view. The
creation of the view generally takes time, depending on the
data specification and the size of raw data chosen. However,
once it is created, the application can access the data quickly.
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IV. EXPERIMEMTAL EVALUATION

A. Overview of Experiment

We conduct an experiment to evaluate performance of
MVaaS. The experiment is performed on our Scallop4SC
prototype, which is a Hadoop cluster comprising 9 nodes
(Intel(R) Corei7-3770, 32GB, CentOS-x64). Libraries used
for Hadoop/MapReduce are hadoop-core-1.0.4.jar
and hbase-0.94.7.jar. The raw data used in experi-
ment is power consumption logs gathered in our smart home
environment CS27-HNS [10]. The consumption logs have
been taken every 3 seconds from 32 devices, for over two
years. For one day, the logs comprises 921,600 data rows
(= 20 items x 60 minutes x 24 hours x 32 devices).

From the raw data, we create three kinds of materialized
views with MVaaS: DailyView, HourlyView and Minute-
lyView. They store the total power consumption of each
device for every day, hour and minute, respectively.

In the experiment, we first measure the time taken for
MVaaS to create each materialized view. We then measure
the response time that an application obtains a data item
from a materialized view through MVaaS API. For compar-
ison, we also measure the execution time of the conventional
method without MVaaS, where the application itself directly
obtains raw data and calculates the total consumption.

B. Result of Experiment

Table II shows the result. We can see that MVaaS took
about 7 minutes to create a DailyView for converting
921,600 rows by MapReduce. Once the view is created, the
application can access any data in the view very quickly (2
msec). On the other hand, the conventional method without
MVaaS took 5 minutes for each calculation of the daily
consumption. Thus, we can see that the creation of a view is
efficient especially when the required raw data is large and
the application frequently accesses the aggregated data.

On the other hand, when the size of raw data to be
aggregated is small, the overhead of MapReduce becomes
dominant in the total execution time. As seen in the result of
MinutelyView, the response time without MVaaS is just 0.2
second, which might be acceptable for some applications. In
such cases, using the conventional method is one possible
choice to avoid overhead of creating a materialized view.

V. CONCLUSION

In this paper, we proposed a materialized as a service
(MVaaS) for large-scale house log in a smart city data

Table II
RESULT OF EXPERIMENT

Materialized View Daily Hourly Minutely
# of rows aggregated 921,600 38,400 640
Time for MV creation (sec.) 412.7 52.2 34.7

Resp. time with MVaaS API (sec.) 0.002 0.002 0.002
Direct calculation w/o MVaaS (sec.) 328.022 13.682 0.260

platform Scallop4SC. Using MVaaS, a developer of a smart
city application can easily construct an application-specific
view, by which the application can access the necessary data
efficiently. For a given data specification, MVaaS dynami-
cally generates a MapReduce program that converts the raw
data into the view. The program is then executed on Hadoop
of Scallop4SC, and published as a service with API. We
have evaluated the proposed method through case studies
and performance evaluation.
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